

右の文は、goukei に〈変数〉を次々に加算し、

合計を求めるプログラムである。

☆集計

〈変数〉を〇から□まで１ずつ増やしながら繰り返す：

⎿ goukei = goukei +〈変数〉

（１）goukei = 0

（２）i を 1 から ア まで 1 ずつ増やしながら繰り返す：

（３）⎿ goukei = イ

（４） 表示する（”合計は”, goukei）

（１）Data = [3, 5, 4, 1, 7]

（２）n = 要素数(Data)

（３）sum = 0

（４）i を 0 から ア まで 1 ずつ増やしながら繰り返す：

（５）⎿ sum = イ

（６） 表示する（”合計は”, sum）

右の文は、整列された配列 Data の値に

それぞれ順位付けするプログラムである。

☆順位付け

i を 0 から□まで１ずつ増やしながら繰り返す：

⎿ 表示する（i +1, "位：", Data[i]）

（１）Data = [100, 70, 50, 10]

（２）i を 0 から ア まで 1 ずつ増やしながら繰り返す：

（３）⎿ 表示する（ イ , "位：", Data[i], "点"）

右の文は、２つの変数 a,b を交換
こうかん

するプログラムである。

このプログラム内で使われる変数 temp を一時
い ち じ

変数
へんすう

（テンポラリ変数）という。

☆交換

temp = a

a = b

b = temp

（１）Data = [5, 3]
-

（２）temp = Data [0]

（３）Data[0] = ア

（４）Data[1] = イ

（５）表示する（Data）

１ 次のプログラムは、1 から 5 までの自然数の和を表示するプログラムである。

 【出力結果】 合計は 15

２ 次のプログラムは、配列 Data 内の値を集計するプログラムである。

【出力結果】 合計は 20

３ 次のプログラムは、降順に整列された配列 Data 内で大きいものから順位を付けるプログラムである。

 【出力結果】１位：100 点

２位：70 点

３位：50 点

４位：10 点

４ 次のプログラムは、配列 Data 内の 5 と 3 を交換するプログラムである。

【出力結果】 3, 5

 ア に適するものは　　　

① 4 ② 5 ③ 6 ④ 7

 イ に適するものは　　　

⑤ goukei + 1 ⑥ goukei + i

⑦ i ⑧ goukei＊i

 ア に適するものは　　　

① n – 1 ② n

③ n + 1 ④ n + 2

 イ に適するものは　　　

⑤ sum + 1 ⑥ sum + Data[i]

⑦ sum + i ⑧ Data[i]

 ア に適するものは　　　

① 2 ② 3 ③ 4 ④ 5

 イ に適するものは　　　

⑤ i – 1 ⑥ i

⑦ i + 1 ⑧ i + 2

 ア に適するものは　　　

① Data[0] ② Data [1] ③ temp ④ 5

 イ に適するものは　　　

⑤ Data [0] ⑥ Data [1] ⑦ temp ⑧ 3

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

右の文は、配列 Data 内の最大値を求める

プログラムである。

配列を左から見ていき、より大きいものが

あれば、変数 max をそれに更新する。

☆最大値・最小値

i を〇から□まで１ずつ増やしながら繰り返す：

│ もし max < Data[i]ならば：

⎿ ⎿ max = Data[i]

（１）Data = [1, 6, 4, 8, 10]

（２）n = 要素数(Data)

（３）max = Data[0]

（４）i を 1 から ア まで 1 ずつ増やしながら繰り返す：

（５）│ もし イ ならば：

（６）⎿ ⎿ max = Data[i]

（７）表示する（”最大値は”, max）

① 複数のデータの中から目的のデータを探し出すことを、探索
た ん さ く

という。

② 配列を先頭から順にみていきながら、探索値に一致

するデータを探し出す探索方法を、線形
せ ん け い

探索
た ん さ く

法
ほ う

という。

② 右の文は、線形探索法のプログラムである。

 記号「＝＝」は、「一致する」という意味。

 探索値 x が見つかったら、繰り返しを終了する。

☆線形探索法

i を〇から□まで１ずつ増やしながら繰り返す：

│ もし Data[i] == x ならば：

│ │ 表示する(～～, “番目”)

⎿ ⎿ 繰り返しを抜ける

（１）Data = [10, 6, 4, 2, 1, 5]

（２）n = 要素数(Data)

（３）min = Data[0]

（４）i を 1 から ア まで 1 ずつ増やしながら繰り返す：

（５）│ もし イ ならば：

（６）⎿ ⎿ min = ウ

（７）表示する（”最小値は”, min）

（１）Data = [10, 16, 45, 57, 68, 75, 91]

（２）n = 要素数(Data)

（３）x = 【外部からの入力】

（４）i を 0 から n – 1 まで 1 ずつ増やしながら繰り返す：

（５）│ もし ア ならば：

（６）│ │ 表示する（x, “は”, イ , ”番目に存在”）

（７）⎿ ⎿ 繰り返しを抜ける

５ 次のプログラムは、配列 Data 内の最大値を求めるプログラムである。

【出力結果】 最大値は 10

６ 次のプログラムは、配列 Data 内の最小値を求めるプログラムである。

【出力結果】 最小値は 1

実験７ 次の配列において、(1)～(4)は左から何番目かを線形探索法で調べよう。(モグラノートで実験)

10, 16, 45, 57, 68, 75, 91

 (1) 75 (2) 45 (3) 91 (4) 57

８ 次のプログラムは、配列 Data から線形探索法で変数 x に入力された値を探すプログラムである。

 【出力結果】 75 を入力 → 75 は 6 番目に存在

45 を入力 → 45 は 3 番目に存在

91 を入力 → 91 は 7 番目に存在

57 を入力 → 57 は 4 番目に存在

 ア に適するものは　　　

① n – 1 ② n

③ n + 1 ④ n + 2

 イ に適するものは　　　

⑤ max < Data[i]

⑥ max > Data[i]

 ア に適するものは　　　

① n – 1 ② n

③ n + 1 ④ n + 2

 イ に適するものは　　　

⑤ min < Data[i]

⑥ min > Data[i]

 ウ に適するものは　　　

⑦ Data[i – 1]

⑧ Data[i]

⑨ Data[i + 1]

 ア に適するものは　　　

① Data[i] == x

② Data[i] != x

③ Data[i] < x

④ Data[i] > x

 イ に適するものは　　　

⑤ i – 1

⑥ i

⑦ i + 1

⑧ i + 2

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

① 探索範囲を半分に絞り込むことを繰り返して、

目的のデータを探す方法を、二分
に ぶ

探索
たんさく

法
ほう

という。

なお、事前にデータを昇順または降順に並べておく。

 ② 右の文は、二分探索法のプログラムである。

 変数 hidari から migi までが、探索範囲を表す。

 変数 aida は、探索範囲の中央を表す。

 この中央値が探索値 x と一致するかを調べる。

 一致しないなら、探索範囲を右半分 or 左半分にする。

☆二分探索法

hidari <= migi の間繰り返す：
│ aida =〈中央値〉

│ │ もし Data[aida] == x ならば：

│ │ 表示する(～～, "番目")

│ そうでなくもし ～～ ならば：

│ │ migi = aida – 1

│ そうでなければ：

⎿ ⎿ hidari = aida + 1

（１）Data = [10, 16, 45, 57, 68, 75, 91]

（２）hidari = 0

（３）migi = 要素数(Data) – 1

（４）x = 【外部からの入力】

（５）hidari <= migi の間繰り返す：

（６）│ aida = ア

（７）│ もし イ == x ならば：

（８）│ │ 表示する (aida + 1, "番目")

（９）│ │ 繰り返しを抜ける

(10) │ そうでなくもし Data[aida] < x ならば：

(11) │ │ ウ

(12) │ そうでなければ：

(13) ⎿ ⎿ エ

① データをある規則にしたがって整列することをソートという。

小さい値から大きな値へと整列する 昇 順
しょうじゅん

と、大きな値から小さな値へと整列する降 順
こうじゅん

がある。

② 隣同士を比較して、昇順または降順になるように交換を

繰り返す方法を、バブルソート（隣接
りんせつ

交換法
こうかんほう

）という。

③ 右の文は、バブルソートのプログラムである。

 変数 i と j の二重ループを繰り返す。

 Data[j] ≶ Data[j+1]
 ↑この不等号は、昇順か降順かで変わる。

 temp 以降の３行は、Data[j]と Data[j+1]を交換する。

☆バブルソート（隣接交換法）

i を～～しながら繰り返す：
│ j を～～しながら繰り返す：

│ │ もし Data[j] ≶ Data[j+1]ならば：

│ │ │ temp = Data[j]

│ │ │ Data[j] = Data[j+1]

⎿ ⎿ ⎿ Data[j+1] = temp

（１）Data = [12, 11, 13, 5]

（２）n = 要素数(Data)

（３）i を 1 から n – 1 まで 1 ずつ増やしながら繰り返す：

（４）│ j を 0 から ア まで 1 ずつ増やしながら繰り返す：

（５）│ │ もし Data[j] > Data[j+1] ならば：

（６）│ │ │ temp = Data[j]

（７）│ │ │ Data[j] = イ

（８）⎿ ⎿ ⎿ Data[j+1] = ウ

（９）表示する（Data）

実験９ 次の配列において、(1)～(4)は左から何番目かを二分探索法で調べよう。(モグラノートで実験)

10, 16, 45, 57, 68, 75, 91

 (1) 75 (2) 45 (3) 91 (4) 57

10 次のプログラムは、配列 Data から二分探索法で変数 x に入力された値を探すプログラムである。

実験 11 次の配列を、バブルソートで昇順に並べ替えしてみよう。(モグラノートで実験)

(1) 12, 11, 13, 5 (2) 77, 42, 89, 58, 97, 3, 18, 62, 33, 29

12 次のプログラムは、バブルソートにより、配列 Data を昇順に並び替えるものである。

【出力結果】 5, 11, 12, 13

 ア に適するものは　　　

① (hidari + migi) ÷ 2

② (hidari + migi – 1) ÷ 2

 イ に適するものは　　　

③ Data[hidari]

④ Data[aida]

⑤ Data[migi]

 ウ に適するものは　　　

⑥ hidari = aida + 1

⑦ migi = aida – 1

 エ に適するものは　　　

⑧ hidari = aida + 1

⑨ migi = aida – 1

【出力結果】 75 を入力 → 6 番目

45 を入力 → 3 番目

 ア に適するものは　　　

① n – 1

② n + 1 + i

③ n – 1 – i

 イ に適するものは　　　

④ Data[j]

⑤ Data[j + 1]

⑥ temp

 ウ に適するものは　　　

⑦ Data[j]

⑧ Data[j + 1]

⑨ temp

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

最小値または最大値を選択して交換することで並べ替える方法を、選択
せんたく

ソートという。

☆選択ソート

（１）Data = [12, 11, 13, 5]

（２）n = 要素数(Data)

（３）i を 0 から n – 2 まで１ずつ増やしながら繰り返す:

（４）│ min = i

（５）│ j を i + 1 から ア まで１ずつ増やしながら繰り返す:

（６）│ │ もし イ ならば：

（７）│ ⎿ ⎿ min = j

（８）│ temp = Data[i]

（９）│ Data[i] = ウ

（10）⎿ Data[min] = temp

（11）表示する（Data）

未整列の要素を整列済みの要素列の適切な位置に挿入することで並べ替える方法を、挿 入
そうにゅう

ソートという。

☆挿入ソート

（１）Data = [12, 11, 13, 5]
-

（２）n = 要素数(Data)

（３）i を 1 から n – 1 まで 1 ずつ増やしながら繰り返す：

（４）│ hokan = Data[i]

（５）│ j = i – 1

（６）│ ア の間繰り返す
-

（７）│ │ Data[j+1] = Data[j]

（８）│ ⎿ j = j – 1

（９）⎿ イ

（10）表示する(Data)

総合問題の演習 → 「実践攻略 情報Ⅰ」テキストの 94～103 ページ

実験 13 次の配列を、選択ソートで昇順に並べ替えしてみよう。(モグラノートで実験)

(1) 12, 11, 13, 5 (2) 77, 42, 89, 58, 97, 3, 18, 62, 33, 29

14 次のプログラムは、選択ソートにより、配列 Data を昇順に並び替えるものである。

【出力結果】 5, 11, 12, 13

実験 15 次の配列を、挿入ソートで昇順に並べ替えしてみよう。(モグラノートで実験)

(1) 12, 11, 13, 5 (2) 77, 42, 89, 58, 97, 3, 18, 62, 33, 29

16 次のプログラムは、挿入ソートにより、配列 Data を昇順に並び替えるものである。

【出力結果】 5, 11, 12, 13

 ア に適するものは　　　

① n – 1 ② n

③ n + 1 ④ n + 2

 イ に適するものは　　　

⑤ Data[min] > Data[j]

⑥ Data[min] < Data[j]

 ウ に適するものは　　　

⑦ Data[i]

⑧ Data[min]

⑨ temp

 ア に適するものは　　　

① j > 0 and Data[j] > hokan

② j >= 0 and Data[j] > hokan

③ j > 0 or Data[j] > hokan

④ j >= 0 or Data[j] > hokan

 イ に適するものは　　　

⑤ Data[i] = hokan

⑥ Data[i + 1] = hokan

⑦ Data[j] = hokan

⑧ Data[j + 1] = hokan

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

